
Basic Data Modeling

Slides adapted from Prof. Heimann CMU-P

Why Data Modeling?

Why Data Modeling?

• A bridge to convert requirements into a database

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

• Cheaper to fix errors at this stage

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

• Cheaper to fix errors at this stage

• Understandable to users and developers

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

• Cheaper to fix errors at this stage

• Understandable to users and developers

• Data is critical!

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

• Cheaper to fix errors at this stage

• Understandable to users and developers

• Data is critical!

• Entity-Relationship modeling is fairly easy to do

What Makes a Good Data Model?

• Completeness - Does the model support all the necessary data?

• Nonredundancy - Does the model specify a database in which the same fact
can be recorded more than once?

• Enforcement of Business Rules - How accurately does the model reflect and
enforce rules that apply to the business data?

• Data Reusability - Will the data stored in the database be reusable for
purposes beyond those initially anticipated?

• Stability and Flexibility - How well will the model cope with possible changes
to business requirements?

• Elegance - Does the data model provide a reasonably neat and simple
classification of the data?

What kind of Datamodels?

• Conceptual Data Model - Technology independent specification of data to be
held in the database. Focus is on communication between the data modeler
and business stakeholders.

• Logical Data Model - Translation of the conceptual models into structures
useable by DBMS (tables and columns).

• Physical Data Model - Deal with performance, physical storage, and access
mechanisms.

What is an entity?

What is an entity?

Applied to Creamery

Applied to Creamery

Employee

Applied to Creamery

First Name

Employee

Applied to Creamery

Last Name

First Name

Employee

Applied to Creamery

Last Name
Qatar ID

First Name

Employee

Applied to Creamery

Last Name
Qatar ID

Mobile

First Name

Employee

Applied to Creamery

Last Name
Qatar ID

Mobile

DOBFirst Name

Employee

Another look at “Employee”

Employee

First Name
Last Name
Qatar ID
Mobile
DOB

All the entities

Employee

All the entities

Employee Shop

All the entities

Employee Shop Shift

All the entities

Employee Shop Shift

Revenue
Report

All the entities

Employee Shop Shift

Revenue
Report Item

All the entities

Employee Shop Shift

Revenue
Report Item Transfer

All the entities

What about relationships?

What about relationships?

Shop

Employee

works

Revenue
Report

earned
at

Shop

Employee

works

Employee Shop Revenue
Reportwork at

have

earned by

earn

Types of Relationships

Types of Relationships

one-to-one...

Types of Relationships

one-to-one...

one-to-many (parent to child)
many-to-many (sibling to sibling)

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Mandatory (Optional) Relationships?

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop Revenue
Reportwork at

have

earned by

earn

Employee Shop
work at

have

Employee Shop
work at

have

Create Associations

Employee Employee
Shop Shop

Employee Shift Shop

Employee ID
First Name
Last Name
SSN

Shop ID
Shop Name
Address
Phone

Employee ID
Shop ID
Date
Start Time

Employee Shop Revenue
Report

Transfer
Item

Transfer

Shift

Item

Summary :: ERD

Summary :: ERD

• Identify all entities and attributes

Summary :: ERD

• Identify all entities and attributes

• Define relationships between entities

Summary :: ERD

• Identify all entities and attributes

• Define relationships between entities

• Determine connectivity and transform many-to-many relationships

Summary :: ERD

• Identify all entities and attributes

• Define relationships between entities

• Determine connectivity and transform many-to-many relationships

• Ascertain whether required/optional

Summary :: ERD

• Identify all entities and attributes

• Define relationships between entities

• Determine connectivity and transform many-to-many relationships

• Ascertain whether required/optional

• Recognize that data modeling is usually iterative process

Class Problem

A college runs many classes. Each class is taught by one or more
teachers, and a teacher may teach several classes. A particular
class always uses the same room. Because classes may meet at
different times or on different evenings, it is possible for different
classes to use the same room.
!
Draw out a simple ERD to capture the essential information in this
example.

Example courtesy of db4u (http://db4u.wikidot.com)

Professor
Classes

Solution

Room Class Professor
houses

meets

teaches

taught by

Organizing the Logical Data Model

The old way of doing it...

A new tool: relational databases

• Create a series of data tables
and a means to link them
together so that data can be
combined and extracted as
need be.

• Terminology

• Table (file)

• Record (row)

• Field (column)

shifts
id employee_id date

1 3 2008-08-04

2 3 2008-08-05

3 4 2008-08-04

4 2 2008-08-05

employees
id first_name last_name DOB

1 Mark Heimann 1993-01-25

2 Alex Heimann 1993-01-25

3 John Milton 1608-12-09

4 Mary Shelley 1797-08-30

Employee Shop Revenue
Report

Transfer
Item

Transfer

Shift

Item

Converting from ERD

• All entities become tables

• All attributes become fields

• Primary keys need to be set

What is the “key” to RDB?

Types of keys

Types of keys

Primary: Uniquely identify a record in a table

Types of keys

Primary: Uniquely identify a record in a table

Foreign: A field in Table A which is also a primary key
in Table B; used to establish links between tables

Types of keys

Primary: Uniquely identify a record in a table

Foreign: A field in Table A which is also a primary key
in Table B; used to establish links between tables

Composite: A combination of keys which together
serve to uniquely identify a record

Creamery database, v. 0.5

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 0.5

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 0.5

shifts(employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 0.5

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 0.5

shops(id, short_name, street, zip, weekly_rent, phone, active)

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 0.5

shops(id, short_name, street, zip, weekly_rent, phone, active)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

Database Integrity

Database Integrity

• 1st Type: Entity Integrity

• key idea -- table must have a valid primary key

Database Integrity

• 1st Type: Entity Integrity

• key idea -- table must have a valid primary key

• 2nd Type: Domain Integrity

• key idea -- data type and format must be valid

Database Integrity

• 1st Type: Entity Integrity

• key idea -- table must have a valid primary key

• 2nd Type: Domain Integrity

• key idea -- data type and format must be valid

• 3rd Type: Referential Integrity

• key idea -- don’t leave behind orphaned records

Normalizing databases

Normalizing databases

• What is normalization?

Normalizing databases

• What is normalization?

• process to create a flexible, nonredundant, and efficient data model that
can be implemented in a RDB

Normalizing databases

• What is normalization?

• process to create a flexible, nonredundant, and efficient data model that
can be implemented in a RDB

• helps preserve referential integrity

Normalizing databases

• What is normalization?

• process to create a flexible, nonredundant, and efficient data model that
can be implemented in a RDB

• helps preserve referential integrity

• How important is normalization?

Normalizing databases

• What is normalization?

• process to create a flexible, nonredundant, and efficient data model that
can be implemented in a RDB

• helps preserve referential integrity

• How important is normalization?

• Usually problematic if < 3NF

Normalizing databases

• What is normalization?

• process to create a flexible, nonredundant, and efficient data model that
can be implemented in a RDB

• helps preserve referential integrity

• How important is normalization?

• Usually problematic if < 3NF

• A case can be made for “sensible normalization”

Normalization & the creamery

transfers(transfer_id, shop_id, shop_name,
shop_phone, shop_street, shop_zip, date_requested,
date_fulfilled, {1-N occurrences of the following
group}: item_id, item_name, item_cost,
quantity_requested, quantity_transferred)

Question 1:	 Does the entity have repeating any
	 	 	 	 	 elements?

Question 1:	 Does the entity have repeating any
	 	 	 	 	 elements?

transfers(transfer_id, shop_id, shop_name,
shop_phone, shop_street, shop_zip, date_requested,
date_fulfilled)

transfer_items (transfer_id, item_id, item_name,
item_cost, quantity_requested, quantity_transferred)

Question 2:	 Does the entity have a composite key?

Question 2:	 Does the entity have a composite key?

• If not, go on to question 3...

Question 2:	 Does the entity have a composite key?

• If not, go on to question 3...

• If so, ask the follow-up question ...

Question 2:	 Does the entity have a composite key?

• If not, go on to question 3...

• If so, ask the follow-up question ...

Question 2a: Are there any partial dependencies?

Question 2:	 Does the entity have a composite key?

• If not, go on to question 3...

• If so, ask the follow-up question ...

Question 2a: Are there any partial dependencies?

• That is to say, are there any fields in the table that depend on only part of the
composite key?

Another look at the example

transfers(transfer_id, shop_id, shop_name,
shop_phone, shop_street, shop_zip, date_requested,
date_fulfilled)

transfer_items (transfer_id, item_id, item_name,
item_cost, quantity_requested, quantity_transferred)

transfer_items (transfer_id, item_id,
quantity_requested, quantity_transferred)

Another look at the example

transfers(transfer_id, shop_id, shop_name,
shop_phone, shop_street, shop_zip, date_requested,
date_fulfilled)

items (item_id, item_name, item_cost)

Question 3:	 Are there any transitive dependencies?

Question 3:	 Are there any transitive dependencies?

• That is to say, are there any fields in the table that depend on another field in
the table that is not the primary key?

Where is the transitive dependency?

transfer_items(transfer_id, item_id,
quantity_requested, quantity_transferred)

transfers(transfer_id, shop_id, shop_name,
shop_phone, shop_street, shop_zip, date_requested,
date_fulfilled)

items(item_id, item_name, item_cost)

A 3NF version

transfer_items(transfer_id, item_id,
quantity_requested, quantity_transferred)

transfers(transfer_id, shop_id, date_requested,
date_fulfilled)

items (item_id, item_name, item_cost)

shops(shop_id, shop_name, shop_phone,
shop_street, shop_zip)

Denormalization

Denormalization

• Examples

Denormalization

• Examples

• Address, phone data

Denormalization

• Examples

• Address, phone data

• City, ST -> Zip Code

Denormalization

• Examples

• Address, phone data

• City, ST -> Zip Code

• Why denormalize?

Denormalization

• Examples

• Address, phone data

• City, ST -> Zip Code

• Why denormalize?

• Dangers of denormalization

Creamery database, v. 1.0

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shifts(employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shops(id, short_name, street, zip, weekly_rent, phone, active)

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shops(id, short_name, street, zip, weekly_rent, phone, active)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shops(id, short_name, street, zip, weekly_rent, phone, active)

transfers(id, shop_id, date_requested, date_fulfilled)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

transfer_items(transfer_id, item_id, quantity_requested, quantity_transferred)

shops(id, short_name, street, zip, weekly_rent, phone, active)

transfers(id, shop_id, date_requested, date_fulfilled)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

transfer_items(id, transfer_id, item_id, quantity_requested, quantity_transferred)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shops(id, short_name, street, zip, weekly_rent, phone, active)

transfers(id, shop_id, date_requested, date_fulfilled)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

transfer_items(id, transfer_id, item_id, quantity_requested, quantity_transferred)

employees(id, first_name, last_name, date_of_birth, ssn, pay_rate, email, active)

Creamery database, v. 1.0

shops(id, short_name, street, zip, weekly_rent, phone, active)

items(id, name, cost, unit, units_in_stock)

transfers(id, shop_id, date_requested, date_fulfilled)

revenues(id, shop_id, week_ending, weekly_amount)

shifts(id, employee_id, shop_id, start_at, hours_worked)

Questions?

